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ABSTRACT

Self adaptive filters adjust their parameters to perform

an almost optimal filtering operation without apriori know-

ledge of the input signal statistics. Two approaches to the

design of efficient self adaptive discrete filtering algorithms

are considered.

For non-recursive (FIR) adaptive filters, simplified esti-

mations of the gradient of the performance function to be

minimized are considered. These algorithms result in reduced

complexity of implementation, improved dynamic operating range

with about the same misadjustment errors and convergence time

as the classic LMS (Lease Means Squared) algorithm. An analy-

sis of the simplified gradient approach is presented and con-

firmed experimentally for the specific example of an adaptive

line enhancer (ALE). The results are used to compare the

simplified gradient approaches with each other and the LMS

algorithm. This comparison is done using a new graphic pre-

sentation of adaptive filter operating characteristics and a

complexity index. This comparison indicates that the simplified

gradient estimators are superior to the LMS algorithm for

filters of equal complexity.

For recursive (IIR) adaptive filters a combined random

and gradient search (RGS) algorithm is proposed, analyzed and

tested. Since for the IIR filter, the performance surface is

multimodal in the feedback parameters and unimodal in the

feedforward parameters, random search is used to adjust the
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feedback parameters and gradient search to adjust the feed-

forward parameters. Convergence to the globally optimal

filter parameters is guaranteed for sufficiently long

adaptation time. Convergence time estimation for the RGS

algorithm is derived and supported by simulation results for

the ALE example. Finally, apriori knowledge of the optimal

filter structure is taken into account in the formulation of

an improved version of the basic RGS algorithm. This improve-

ment is confirmed with the ALE example.

'I
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I. INTRODUCTION

1.1. BACKGROUND

In a broad sense the term filter implies an operation

*on an input signal or collection of data in order to smooth,

predict, or estimate a desired property hidden in the input.

Fig. 1.1-1 presents the block diagram of a discrete time

linear recursive digital filter. An optimal filter is one

designed to be optimum or best with respect to a performance

criterion that measures or expresses its effectiveness. The

most commonly used approach to optimal filter design is the

linear filter optimized with respect to a Minimum Mean

Squared Error (MMSE), where the error is defined as the

difference between the filter output and a desired signal.

This optimal filter is usually called the Wiener filter.

Filter realization may be for: (a) analog signals and con-

tinuous time, (b) analog signals and discrete time, (c) di-

gital signals and discrete time. This dissertation is

applicable to cases (b) and Cc). A basic discussion of

discrete Wiener filters is presented by Nahi [28, Oh 5].

As expected the parameters of the optimal filter depend upon

properties of the input and desired signals. For example,

the Wiener filter solution depends upon the second order

statistics of the input signal and the desired signal.

9
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The performance surface describes the filter performance

criterion as a function of its weights (parameters, coeffi-

cients-a. b. of Fig. 1.1-1). Each point of the surface

is the value of the performance criterion with specific

- I weights of the filter. The term performance function will

be used to describe the performance criterion values as

function of time during the adaptation process. The optimal

filter weights are those at the global minimum point of the

performance surface.

In those cases where the information (input statistics)

needed to design an optimal filter is not available, or in

those cases where the filter is required to operate under

statistically nonstationary input signal conditions, the

usual optimal design approach is not applicable. In some of

these cases, a self adaptive filter can be used to overcome

this lack of information. The adaptive filter tries to

adjust its parameters dynamically to variations in the sta-

tistics of the input signal. For the weight adjustment, or

adaptation, the adaptive filter uses an error signal.

Ideally this error is the difference between the filter out-

put and a desired signal. In many applications the desired

signal is not available per se, so that a reference signal,

related to the desired signal in some way, is used to develop

the error signal. Fig. 1.1-2 presents a block diagram of an

adaptive filter with its input, output and reference signals.

The adaptive filter thus includes a signal processing section

which is similar to a non-adaptive filter, except that the
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filter weights are adjustable and controlled by the second

portion of the adaptive filter-namely the weight adaptation

algorithm. The weight optimization algorithm typically

estimates the gradient of the performance surface and

adjusts the weights in the direction of steepest descent.

For a statistically stationary situation, after some tran-

sient, the adaptive filter can be expected to reach a steady-

state condition at which the parameters jitter around the

minimum point of the performance surface.

The generation of the reference signal is a key consi-

deration in adaptive filter implementation. There are

various practical methods as discussed in [l, 2, 3, 7, 22,

24, 26, 29, 32, 37, 38, 39]. In many of these applications

the reference signal is not identical to the signal we would

like to have as output of the filter because if we had the

desired output we wouldn't need the filter. In spite of

the approximations involved, the adaptive filter is still

able to operate and optimize the weights in many practical

applications.

This dissertation investigates two approaches to effi-

cient adaptive filters. Chapter II discusses simplified

gradient estimation methods for non-recursive filters and

Chapter III discusses recursive filters based on a combined

random and gradient search adaptation technique.

13
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1.2 FIR* ADAPTIVE FILTERS

The FIR filter is the simplest form of digital filter.

The processing operation produces an output which in the

linear sum of weighted delayed input samples. The impulse

response of this filter is given by the sequence of values

of the filter weights. Because of its relative simplicity,

the FIR adaptive filter historically was the starting point

for the development of adaptive filters.

A very important property of this filter is that its

performance surface is quadratic so we have one and only one

*minimum, i.e. it is a unimodal surface as shown by Widrow Cl].

For a unimodal surface, a gradient minimum seeking algorithw

will converge to the minimum (a formal proof is presented in

* []), and this property is the key to the success of the

Least Mean Squared (LMS) algorithm, discussed later. Inter-

est in the area of adaptive filtering started in the late

50's and early 60's. The most successful approach is Widrow's

LMS algorithm. Widrow in [l] presents the classic LMS algori-

thm and summarizes most of the previous work on the subject.

The LMS algorithm and its basic properties are presented

later. In [3) Widrow et al introduces the concept of noise

cancelling which uses a reference signal that is related only

to the noise to estimate the noise portion of the input. The

* FIR CFinite Impulse Response) and IIR (Infinite Impulse
Response) are generally used by the signal processing community
to denote non-recursive and recursive filters respectively
and are so used in this work. It is noted though, that some
recursive filters can have a finite impulse response.
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output is produced by subtracting the noise estimate from

the input signal. In [4] Widrow et al extended the analy-

sis to non-stationary operation of the LMS algorith. In

this study they identify two sources for misadjustment (a

measure of the distance of the actual steady-state error

from the optimal steady-state error) with nonstationary

input signal. The first is due to gradient estimation

errors (or gradient noise) which also exists with stationary

inputs. The second cause of misadjustment with a non-

stationary input is due to the changing statistics, and

results in a lag in updating the filter weights after the

optimal solution. This analysis gives some insight to the

problem and provides basic design information. In [52

Widrow and McCool present a random search FIR filter and

compare it to the LMS algorithm. Using the unimodal pro-

perty of the FIR filter they modify the random search al-

gorithm so that high performance function value points

(which in regular random search methods are discarded) con-

tribute to convergence towards the optimum. Their con-

clusion is that the LMS is a better algorithm; it converges

faster and produces less steady-state misadjustment. In

[6] Widrow et al present versions of the LMS algorithm

that operate on complex data. This concept has recently

become important because of the use of adaptive techniques

in the frequency domain, Dentino [16] and Zentner [17).

Lucky, [7], introduces a Minimum Magnitude performance

criterion to derive an adaptive equalizer. Digital

15
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communication systems use equalizers to reduce the inter-

symbol interference in a communication channel. Lucky's

solution involves transmission of a special training se-

quence which is known at the receiver and is used there as

the reference signal. Another interesting point in his

solution is the use of quantized variables in the adaptation

algorithm.

Finally Frost [26], Owsley [29], Widrow et al [38],

Griffiths and Jim [41] and many others discuss the use of

' the LMS algorithm for adaptive control of sensor beamforming

arrays. We will not discuss these applications in this

dissertation because of their specialized nature. However,

* it is noted that the simplified algorithms presented here are

general and may be used to advantage in antenna arrays.

From the references the importance of the LMS algorithm

is very clear. Surprisingly enough, very little was done to

improve the basic algorithm, the emphasis being primarily on

applications of the concept. Gersho [40] discusses adaptation

in a quantized parameter space. Gersho's discussion is of a

general nature, i.e. no specific performance criterion was

assumed, and his main results is that for unimodal performance

surfaces and deterministic gradient (i.e. no need for sto-

chastic gradient estimation), the quantized algorithm will

converge to the neighborhood of the optimal solution.

Noschner [27] is the only published attempt to derive

computationally more efficient versions of the basic LMS

weight adaptation algorithm, and these results have not

16



been used in practice. Griffiths and Jim in a recent paper

[41] discuss a simplified adaptive system from another point

of view. Their concern is to simplify the signal processing

section in order to achieve high frequency operation. They

propose a 3 level weight quantization, with no multiplica-

tions in the signal processing portion. The resulting

weight adaptation scheme is based on the LMS algorithm, and

it is necessary to store past quantizations. Hence it is

more complicated, but the goal of high frequency operation

is achieved.

Summary of LMS Algorithm

Because of its importance, the LMS adaptive algorithm is

presented here following the basic references [1, 2, 3, 4, 5].

The basic filter output is given by:

Na-1

y(k) =Z a (k)x(k-i) (1.2-1)
i=0

where: k is the time index

Na is the number of filter weights

ai(k) is the ith weight at time k

x(k) = s(k) + n(k) is the input signal consisting of

desired signal s(k) and additive noise n(k).

We want to minimize the performance function:

J(k) - E{e (k)) = Er{y(k) - s(k)} 2  (1.2-2)

17



where: s(k) y(k) - s(k) is the error

In order to perform the adaptation algorithm we need the

gradient of the performance surface:

MJ(k)V (k) = 01,...,Na-i (1.2-3)

In practice we don't have J(k) since s(k) is not known nor

i' I do we have an ensemble of processes to perform the expecta-

tion operation of (1.2-2). Thus we must use an estimate

of the performance function:

J(k) = r(k) = {y(k) - 2 (1.2-4)

where r(k) is a reference signal, not necessarily identical

to s(k).

The gradient estimate is given by:

De 2 (k) r (k)aJ(k) r r r= 2 (k) rai
Va k) =l - -iT a. 2r (k aa.

- 2e (k) 3y) = 2£ (k)x(k-i) (1.2-5)
r ( a. r1

18



Using the gradient estimate of (1.2-5), the LMS weights

adaptation are given by:

ai(k+l) ai(k) - a 7ai = ai(k) - 2u acr (k)x(k-i)

1,2,..., N -1 (1.2-6)a

where Va is the adaptation gain controlling the convergence

and steady-state properties of the filter.

Reference [4] assumes a stationary input with uncorre-

lated samples and derives formulas for the stability region,

convergence time, and misadjustment as follows.

Stable convergence of the adaptation algorithm is limited to

values of U a given by:

0 < 1a < 1 (a Rxx (o)] (1.2-7)

where R (m) = E{x(k)x(k-m)} is the autocorrelation function

xx

of the input. Equation (1.2-7) was derived using the mean

of the gradient estimate. So, in practice, in order to be

stable at all times we need

4a <<11[NaR x x (o)].

19



The approximate Mean Squared Error (MSE) convergence time

constant is given by

tSE l7[4aRxx (o)] (1.2-8)

The misadjustment, M, is defined as the ratio of the excess

Mean Squared Error (MSE), due to adaptive filter steady-

state litter aroued the optimal solution, to the minimum

MSE:

M J steady-state - J min,= jaN R (0) (1.2-9)
Jmin a aaxx

where

Jss = J steady-state = lim J(k)

J min = Jss ofil the optimal Minimum MSE

The misadjustment estimate (1.2-9) was derived for an ideal

reference signal, r(k) = s(k), and does not apply to cases

of noisy reference.

The derivations in [1, 2, 3, 4, 5] are based upon the

use of eigenvalue eigenvector analysis. To obtain practical

estimation formulas the eigenvalues based equations are

approximated by correlation functions. The analysis presented

20



in this dissertation makes the approximations at the start

of the derivations and uses correlation functions throughout.

The advantage of this approach is that it provides better

insight into the nature of the approximations.

i -
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1.3 THE IIR* ADAPTIVE FILTER

An IIR filter uses previous output values to compute

the present filter output:

Na-i Nb
Na -1Nb

y(k) E a. X (k-i) + Z b. y (k-i) (1.3-1)
i=o i=l

Because of the feedback in (1.3-1) the impulse response may

be infinite and is designated IIR.

Because of inherent savings due to the use of previous

calculated values (the existence of poles in the transfer

function), the IIR filter is the most efficient filtering

scheme for many applications.

Since it uses feedback, the IR filter can be unstable.

This presents a design problem for the conventional IIR

filter, and a basic requirement for an IIR adaptation algorithm

is to assure that the resulting filter is stable. A second

disadvantage of the IIR adaptive filter is the multimodal

nature of its performance surface as discussed in section 3.1

White [8] was the first to suggest the use of IIR struc-

tures for an adaptive filter. He indicates a possible use of

several performance criteria and derives the gradient ex-

pression for the Minimum Mean Squared Error (MMSE) performance

criterion. In [9], Stearns et al presents an all adaptive IIR

* FIR (Finite Impulse Response) and IIR (Infinite Impulse
Response) are generally used by the signal processing community
to denote non-recursive and recursive filters respectively and
are so used in this-work. It is noted though, that some
reeursive filters can have a finite impulse response.

22



filter. Stearns' algorithm is rather complex, i.e. the number

of operations (multiplications and additions) is proportional

to a1NaNb+a2Nb , compared to the relative simplicity of

the LMS where the number of operations is proportional to Na -

Stearns' algorithm is discussed later and its gradient esti-

mation method is presented with details.

In [10] Feintuch presents a much simpler adaptive IIR

filter which consists of two LMS adaptive sections, one controls

the feedforward weights adaptation and the second controls the

feedback weights adaptation. Feintuch's algorithm gradient

estimation method is presented later on in this section.

Feintuch's algorithm works in some cases but, as pointed out

by several investigators [11, 12], the derivation has errors

and the filter, at least in the examples presented in [11],

does not converge to the optimal solution.

In [13] Parikh and Ahmed used the same examples presented

in [ll] to demonstrate the convergence properties of Stearns'

algorithm. Reference [13] shows that Stearns' algorithm does

converge to a minimum point, but with a multimodal performance

surface the steady-state might be around a local minimum or the

global minimum depending upon the starting point of the adapta-

tion process. McMurray, [14], investigates the dependence of

Feintuch's algorithm stability on the values of its adaptation

gains. The region of stable operation turns out to be a tri-

angle in the adaptation gains space. In [15] McMurray inves-

tigates the convergence time for Feintuch's algorithm IIR

filtering of narrow band signals and compares operation in the

23



time and frequency domains. In both cases the convergence

time is inversely proportional to the square root of the

multiplication of four factors: feedforward adaptation gain,

feedback adaptation gain, n unber of feedforward weights, and

the number of feedback weights. An additional conclusion was

that the convergence time is shorter for the time domain

operation. Parker and Ko, [18], extend the adaptive IIR

filter for image processing. In [35] Treichler, Larimore

and Johnson modify Feintuch's algorithm by passing the error

term through a FIR filter. This modification allows for con-

vergence to a minimum (not necessarily global), and its use is

limited by the information needed for the design of the error

term filter. The existing IIR adaptive algorithms are based

upon Stearns' and Feintuch's algorithms which are summarized

briefly in the following.

In order to have a practical adaptation method we use a

performance function estimate:

JWk) = Fr2(k) = {y(k) - r(k)} 2  (1.3-2)

where r(k) is the reference signal and y(k) is given by

(1.3-1) with weights a.(k) and bi(k) being a function of time.

The gradient estimate is given now:
A aer(k)

M(k) = 2E r 2C DYk (1.3-3)
i a ai  r 3ai  r aai

the derivitive W. is not as simple as in (1.2-5) because
aai

of the feedback terms such as bjy(k-j) present in y(k).

24



The final form of the gradient estimates of Stearns' algorithm
are given by:

Vai(k) = 2Er(k) a (k) i = 0,1,..., Na-i (1.3-4)

where:

Nb
k)= X(k-i) + E b (k)ct(k-j) (1.3-5)

j=1 J 1

4 and:

SVbi(k) = 2E (k)$ (k) i 1, 2 ,..,Nb (1.3-6)

where:

Nb

(k)= y(k-i) + E bj(k) i(k-j) (1.3-7)
j=l j 1

Equations (1.3-4, 5, 6, 7) are the gradient estimates of

Stearns' algorithm. Feintuch's, [10], algorithm uses only

the first terms in the ex'ressions for ai (1.3-5), and 8i

(1.3-7) and the resulting gradient estimates are:

Val(k) = 2 r(k) x (k-i) (1.3-8)

Vb i(k) = 2cr (k) y (k-i) (1.3-9)

With both algorithms the weights adaptation is given by:

25



Ar
ai(k+l) = ai(k) - 1a Va i(k) i=0,1,1...,a-1 (1.3-10)

bi(k+l) =bi(k) - 1b Vb.(k) i=,2...,N b  (1.3-11)

1 .

where Pa and 4 b are the feedforward and feedback adaptation

gains. These adaptive IIR filtering schemes are not satis-

factory solutions to the IIR filtering problem. Stearnts

algorithm is not satisfactory because of the following

reasons:

- The instability problem mentioned by Elliott, Jacklin

and Stearns, [25]; this problem is discussed later.

- The algorithm does not assure convergence to the global

minimum.

- It is a complicated algorithm.

The Feintuch algorithm is not satisfactory mainly because, in

some cases it fails to converge to a minimum point, and in

all cases does not assure convergence to the global minimum

of the performance surface.
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1.4 INTRODUCTION TO ADAPTIVE FIR FILTERS USING SIMPLIFIED

GRADIENT ESTIMATIONS

The LMS algorithm is being used in many adaptive fil-

tering applications [1 6, 16, 17, 22, 24, 26, 29, 32, 34, 37,

38, 39, 41], with satisfactory results. The possibility of

using simplified algorithms, with hardware and time savings,

has not received much attention. Gersho [40], and Moschner

[27], and recently Griffiths and Jim [41] (which discusses a

somewhat different problem of simplifing the signal processing

portion with more complicated adaptation algorithm) appear

to be the only publications in this area. All applications,

except [41J, seem to select the classical LMS algorithm and

not a simplified version. A possible reason for this fact

might be the lack of confidence in the performance of a

simplified algorithm, compared with the many satisfactory

results obtained with the use of the LMS algorithm. This

dissertation will demonstrate analytically, and by extensive

simulation, the advantages and savings associated with the

use of the simplified algorithms. One natural simplified

algorithm investigated here is the use of a positive or nega-

tive Fixed Step Correction (FSC) in the adaptation, instead

of the LMS correction which is proportional to the value of

the gradient. This gradient estimation is given by:

VFSC(i,k) = Sgn{VLMS(i,k)}=Sgn{s(k)}Sgn{x(k-i)} (1.4-1)
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where:

1 if .]> oSgn[. ]

-1 if [-] < o

The second algorithm investigated here is to use a modified

FSC with the step size proportional to the magnitude of the

error. This algorithm is called here the Simplified LMS

(SLMS), Moschner [27] called this the clipped LMS. The SLMS

has the following gradient estimate:

V SLMS(i,k) = e (k) Sgn{f(k-i)} (1.4-2)

Chapter II discusses these algc:ithms and presents an analysis

and simulation of adaptive FIR filter operation using these

algorithms.

The optimal Wiener filter depends upon the statistics of

the input signal and the desired signal, the steady-state be-

havior of an adaptive filter depends upon the corresponding

statistics. Since the desired signal is not available for the

adaptive filter, and it uses a reference signal which is only

related to the desired signal, it is obvious that the pro-

perties of this filter differ depending upon the application

and manner in which the reference signal is provided. In

Chapter II an adaptive FIR filter is used as an adaptive line

enhancer (ALE) [3, 34, 37, 39J which is a typical signal

processing application and utilizes a noisy reference.
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Appendix A describes the simulation details.

The discussion in Chapter II includes for each algorithm

the following topics.

- convergence and stability, section 2.2.

- convergence time (TC), section 2.3.

-steady-state misadjustment (M), section 2.4.

- implementation complexity, section 2.1.

- dynamic range, seciton 2.6.

Sections 2.3 and 2.4 include derivations of estimation

formulas to the convergence time, TC, and misadjustment, M,

of the FSC and SLMS algorithms.

The simulation experiment, described in Appendix A, shows

good agreement to these misadjustment and convergence time

formulas.

Fig. 1.4-1 presents a typical operation of the adaptive

FIR filter with.LMS, FSC, and the SLMS algorithms. This

figure shows a typical weight, a1 , and the Mean Squared

Error (MSE), as a function of time for the three algorithms

as noted. On each plot we have drawn the optimal value of

the weight or the MSE, an ensemble average of 100 runs as well

as the convergence of an individual filter (single run). In

Fig. 1.4-1 all of the algorithms perform, on the average,

about the same.

For more accurate comparison, a graphic presentation of

adaptive filter properties is introduced in Section 2.1. This

graphic presentation, the Adaptive Filter Operating Charac-

teristic (AFOC) is used to compare equal degree and equal

complexity filters with different algorithms.
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Fig. 1.4-1

Typical FIR adaptive filtersoperation with N = 15, 1 = .0005
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1'SC SLMS = .001, ALE experiment

30



If one looks ahead to Fig. 2.1-1 it is apparent that the

simplified gradient algorithms (FSC and SLMS), when compared

to the LMS algorithm with equal complexity (cost) and equal

convergence time, are more effective and provide more pro-

cessing gain (processing gain is defined later as a measure

of filter effectiveness).

31



F
1.5 INTRODUCTION TO ADAPTIVE IIR FILTERS USING RANDOM

SEARCH TECHNIQUES j
Adaptive IIR filters based on gradient methods have one

major disadvantage which is the multimodal structure of the

performance surface as discussed in section 3.1. Thus there

is no inherent way to assure a steepest descent gradient con-

vergence to the global minimum. The convergence problem

and additional disadvantages of Stearns' and Feintuch's

algorithms, as discussed in section 1.3, suggests that gra-

dient methods may not be the best adaptation scheme for the

IIR filter. Thus a different adaptation technique, namely,

random search, is considered here. The basic concept of

random search is discussed in section 3.2.

A random search IIR filter is presented and discussed

in section 3.3. It is concluded there that this scheme is

not satisfactory. The fact that the IIR filter's performance

surface is quadratic in the feedforward weights (Elliott et

al 125J) is the key for the hybrid Random and Gradient

Search (RGS) algorithm developed in section 3.4. This new

algorithm provides for satisfactory operation of an IIR

adaptive filter. Convergence analysis of the RGS algorithm

and convergence time estimation for a typical signal pro-

cessing situations is given in section 3.5.

For cases where information is available on the structure

of the optimal filter, a constrained, or apriori structured

filter algorithm can be implemented. This concept is

discussed in section 3.6 and shows good results. Fig. 1.5-1
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i 1

presents the error convergence of four filters - the LMS FIR

filter with 20 weights, a RGS IIR filter, an apriori struc-

ture adaptive pole (ASPOL, section 3.8) IIR filter, and

Feintuch algorithm IIR filter. The IIR filters have two

feedback and three feedforward weights. For this example it

is seen that:

1. The LMS algorithm converges fastest.

jI  2. The RGS converges slower but reaches a lower steady-

state error.

3. The ASPOL converges to the lowest steady-state error,

faster than the RGS.

4. Feintuch algorithm converges to the highest steady-

I state error.

These examples are typical.

. I
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ERROR COt4UERGENCE FOR SEVERAL ALGORITHMIS
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p is a parameter constant (pole magnitude)

R is the number of output samples used in estimating the

performance surface value for a fixed set of parameters

(random search interval).

Fig. 1.5-1

Error Convergence For Several Adaptive Filters
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II. ADAPTIVE FIR FILTERS USING SIMPLIFIED
GRADIENT ESTIMATIONS

2.1 TWO SIMPLIFIED GRADIENT ALGORITHMS

Two simplified gradient algorithms are considered:

(a) The Fixed Step Correction (FSC) adaptation scheme

is given by:

ai(k+l) = ai(k) - Pa Sgn{V (i, k)} (2.1-1)

This formulation is essentially binary and was motivated by

the general success of bang-bang type controllers. The

adaptation gain pa is the size of the fixed correction step.

We define the FSC gradient estimate as:

VFSC (i, k) = Sgn {VLMs(i, k)}=Sgn {c(k)} Sgn {x(k-i)}

(2.1-2)

It should be noted that the sign of the gradient, Sgn {7 (i,k)}=

Sgn {x(k-i)} Sgn {e(k)}, is identical for both error magnitude

and mean square error estimates, that is

Sgn { _j = Sgn {5. so that (2.1-2) can be
Sg k } n"a. a

1 1

derived from either error magnitude or mean squared error.

Large correction steps result in fast convergence to the steady-
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state near the optimal filter weights with a large steady-

state jitter around the optimal filter. These contradicting

effects call for engineering compromise in choosing the size

of the correction step pa-

(b) The second approach is to use a variable size

step. A natural possibility is to consider

Pa = 1' le(k)l (2.1-3)

The combination of (1.2-2), (2.1-1), and (2.1-3) gives:

ai(k+l) = ai(k)-I.'c(k)JSgn {E(k)}Sgn(x(k-i)} (2.1-4)

We can use the regular adaptation gain symbol p a instead of

)I' and write

ai(k+l) = ai(k)-ua E(k) Sgn {x(k-i)} (2.1-5)

(2.1-5) is the simplified LMS (SLMS) algorithm with the

gradient estimate given by:

VS (i,k) = e(k) Sgn {x(k-i)} (2.1-6)
S3MS
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Typical operation of the LMS, FSC and SLMS algorithms are

presented in Fig. 1.4-1.

A useful graphic presentation of adaptive filter proper-

ties is given by a plot of processing gain (PG) as a function

of convergence time (TC). The processing gain measures the

filter effectiveness and is defined as:

PG 10 log[Rn (o)/Jss (2.1-7)
nn ss

where R nn(o) is the input noise power and Jss defined in

(1.2-9), is the output error power.

The convergence time, TC, is the time required to reduce

90% of the initial excess MSE. The value of the performance

function at the time TC is:

J(TC) = J + 0.1[J(o) - J ] (2.1-8)

This plot, named the Adaptive Filter Operating Character-

istic (AFOC), can be used for design when the number of filter

weights, Na, is a parameter. It also provides a method of

comparison for different adaptation schemes. Curves for the

LMS, FSC, and SLMS algorithms are presented in Fig. 2.1-lA

for the ALE experiment of Appendix A.

We define the following complexity index (CF) for com-

paring adaptation schemes.

CF = I NMUL + 2 NADD + a3 NCON (2.1-9)

37



C TC

I. EQUJAL ODEIT CCMPARISON 1

9N

Ia

.. .. ... . . . . . . . .-i1

N =6

6-

0 100 NO0300 4" SOO609 70*30M10001100 1260

L.EGEA N LXT O AIO

Averag Of 10 Run

3- - - - - - -



where NMUL, NADD , 4CON are the number of multiplication,

addition and control operations used in one iteration. al,

a2& 3 are weighting coefficients representing the cost of
each operation. A reasonable approximation which neglects

control operations is

CF =aW MUL + NA (2.1-10)
ML ADD

Using the equations for LMS, FSC and SLMS techniques we have

the following complexity indices as a function of the number

of the filter weights, Na:~a

CFMS= ( 2 Na+ 1)a + 2 Na+ 1 (2.1-11)

CFFSC Naa + 2N a+ 1 (2.1-12)

CFsLS (Na+ 1)a + 2Na+ 1 (2.1-13)

As a reasonable numerical example, using a 5, we have

approximately equal complexity with NLMS = 6, NFSC = 11,

NSLMS = 0. The AFOC comparison for this complexity is

presented in Fig. 2.1-lB and indicates that for a given

convergence time the simplified gradient methods provide

1.
higher processing gain.
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2.2 CONVERGENCE AND STABILITY

In this section we discuss conditions for the convergence

and the stability of the simplified gradient estimates. A

stable adaptive filter is one that converges to a near

optimal steady-state. We now define the convergence ratio,

C.i (k):
• a. (k4-l) - a.

C.(k) = * (2.2-1)ai Mk - a.

i1
where a.is the optimal value for the weight a..

Following Widrow et al [1, 3, 4] we define the weight

noise, Vi (k), as:

Vi (k) = ai (k) - ai  (2.2-2)

Combining (2.2-1) and (2.2-2) gives:
V. (k+1)

C (k) (2.2-3)
1 V .(k)

From (2.2-2) and (1.2-6) we get:

Vi(k+l) = Vi(k) - a (k) (2.2-4)

Combining (2.2-3) and (2.2-4) we get:

v k)
C. (k) = 1 - a (2.2-5)

The steady state average convergence ratio is defined as:

EVai(k)
Ci= E{Ci(k)} = l-PaE{v 1} (2.2-6)

where k is large enough for operation of the filter to be in

steady-state. From this point we proceed with the specific

case of the SLMS, with its gradient estimate given by (2.1-6).
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The error as function of the weight noise is given from (2.2-2)

and (1.2-4) as:

N -i
N a

r(k) = r (k) + Z Vj(k) X (k-j) (2.2-7)
j=0

where er(k) is the optimal error at time k and is given by:

N -1
* (k a *

C (k) = a. X(k-i) - r(k) (2.2-8)r i=O i

Inserting (2.2-7) to (2.1-6) results in the equation:

V SLMS(i'k) = (k) Sgn {X(k-i)} +

N -1
a

+ E V.(k)X(k-j) Sgn{x(k-i)} (2.2-9)
j=o

Inserting (2.2-9) into (2.2-6) we get:

e (k) Sgn{x(k-i) }Ci = i.-lU a {E{ r
S a Vi (k)

" N -l
N a V. (k)

+ E E {( - X (k-j) Sgn {x(k-i)}}} (2.2-10)i. j=o

Er (k) is independent of x(k-i) and of Vi(k) so that:
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*I

(k) Sgn{x(k-i)} *
Vik) I.(k)k) -=0 (2.2-11)

because E[c* r(k)] = 0.

To continue with the simplification of (2.2-10) we make the

following assumptions:

(a) Vi (k) and x(k-j) are uncorrelated
(2.2-12)

(b) E{V. (k)/Vi (k)} = 1

Assumption (a) is similar to the uncorrelated input assump-

tion used by Widrow in (1] and seems to be justified by his

results. Assumption (b) is made for mathematical convenience

and can be justified by the dependence of the weight noises

on the common error terms and the uniform statistics of the

input signal over the filter memory.

Using (2.2-11) and (2.2-12) in (2.2-10) we get:

N -1a
i= - E{x(k-j) Sgn Cx(k-i)]} (2.2-13)

j-0

Since x(k-j) Sgn {x(k-i)} < fx(k-j)j we can write:

N-1a
Ci < 1 - P a Z E lx(k-j)j (2.2-14)

)=0

For stationary input signals E{x(k-j)} = E{x(k)} with all

values of j and we get:
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-C< 1 - aN Ejx(k)I (2.2-15)

For stable operation, as well as for convergence to the

optimal weight values, we require

I I<  1 (2.2-16)
.1.

* jManipulating (2.2-15) and (2.2-16) to obtain the stability
condition for ua yields for the SLMS algorithm:

0 < SLMS < N 2 (2.2-17)
, MS N a EIx(k)j!a

To express (2.2-17) as function of the input power, Rxx(o),

we can define the input signal form factor, Fx , as:

F = EIX(k)I// E{X 2 (k)} (2.2-18)

Now inserting (2.2-18) in (2.2-17) results in:

0 < PSLMS <  2 (2.2-19)

i N~ax Rxx()

For the LMS algorithm we can use (2.2-6) and the LMS gradient

estimate. Following the above derivation and using the

assumptions of (2.2-12) we get

0< < 1ax (2.2-20)
LMS a xx
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(2.2-20) is equivalent to equation (32) in [4] which was

derived in a diferent manner but with similar assumptions.

To derive the stability region of the FSC algorithm we

use (2.2-17) and the relationship between the FSC and the

SLMS algorithms, we define an equivalent adaptation

gain, U eq' by the formula

i1FSC = eEI~r (k)f (2.2-21)

It is interesting to note that we are now using the deriva-

tion process of Section 2.1 for the SLMS algorithm in a

reverse direction. The case of greatest interest is that of

a low signal to noise ratio. For this case we use the

following approximations:

C (k) = y(k) -s(k+l)-n(k+l)'Z-n(k+l)z=-r(k)
r

and

El r(k)>=Ejr(k)I = Ejx(k)[ (2.2-22)

Inserting Ueq from (2.2-21) into the SLIAS relation, given by

(2.2-17), with the use of (2.2-22) results in the following.

0 < FSC < 2/N (2.2-23)

The foregoing relationships (2.2-17), (2.2-20) and (2.2-23),

are based upon average behavior of the algorithms. In
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practice, to avoid numerical overflow, we must use adaptation

gain values much smaller than the upper limit indicated in the

above relations. An additional consideration that also results

in a smaller adaptation gain is the misadjustment. For all

the algorithms, the use of the upper bound value for the

adaptation gain results in a misadjustment of the order of the

optimal filter gain (PF), which means that practically we are

restricted to much lower values of the adaptation gain. The

results of this section are included in Table 2.6-1.
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2.3 CONVERGENCE TIME ESTIMATION

In order to estimate the convergence time of an adaptive

filter one may visualize the process as changing the weights

with some average step, A, taken in most of the iterations

towards the optimal value of the weight. Assuming an initial

value of zero for all the weights, the longest convergence

time will be associated with weight having the largest abso-

lute value, amax- From the above it is reasonable to assume

the following relationship:

TCt amax N a2(2.3-1)

aa

*unknown coefficients. amax1/A is the exact number of steps

needed for convergence if the correction is always in the

right direction. In practice the gradient estimation causes

* errors in the direction, and the number of iterations re-

quired to converge to the optimal value of the weights is

modified by a factor that depends in some non-linear way on

the number of weights N a- This modification is represented
CL2

in (2.3-1) by the factor a,. N .Also a1 depends on the

exact definition of TC (i.e. 10% or e-1 of the initial error

squared). Filter operation involves a linear combination of

* input values. Since the reference amplitude is independent

of N , when we combine more input samples the relative weight

associated with each sample should be smaller, mathematically:
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ri

'max  N (2.3-2)
aa

In general, a3, depends upon the input signal to noise ratio

as discussed in the literature [3, 33]. This dependency is

not taken into account in the derivations which follow in

r order to simplify comparison of the new algorithms with

existing algorithms. The results of reference [37] can be

used to modify the results presented here to include the de-

pendence upon input signal to noise.

When looking at specific applications, such as Adaptive

Line Enhancement (ALE), one can determine the value of a3 inw3
(2.3-2) exactly. Inserting (2.3-2) to (2.3-1) and absorbing

a into ai' we write:

aI N 2

TC= AN (2.3-3)
a

A in (2.3-3) depends on the adaptive scheme. It is the

fixed step size in the FSC algorithm and an average step

size for the LMS and the SLMS algorithms. Thus for these

three cases we define:

AFSC = VFSC (2.3-4)

AlMS = E{p LMS VL S J 2 pLMS E{jE(k)x(k-i)j} (2.3-5)

AS = E{lU SLMSE),vSE F-(k)Sgn x(k-i)l}l (2.3-6)
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Using (2.3-3) and (2.3-4) and the empirical coefficients a

1.65 O2 = 1/2 as evaluated using the simulations described in

Appendix A, we get the following FSC convergence time to 10%

of the initial squared error:

1.65
TC 1 (2.3-7)

WFSC Va

where TC is the time required to reduce the error to 10% as

defined by (2.1-8). Fig. 2.3-1 presents a verification of

(2.3-7) using simulation results with several values of FSC ,

Na , and the input power R xx(0).

The significance of these results is that they confirm

that the convergence time is inversely proportional to the

adaptation gain and the square root of the number of weights.

Assuming in (2.3-5) that

E(lI (k)ij'x(k-i)I} = EI (k)jl Elx(k-i)l we get:

A = 2ULM Ele(k)I Elx(k-i) 1 (2.3-8)

At the start of the adaptation process the initial weights

have a value of zero, so that y(O) = 0 and e(Q) = r(Q). For

the correlated reference case the reference power is essen-

tially the same as the input power and we have:
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AI LMS = 2ULMS Ejx(k) I Ejx(k) 1 (2.3-10)

Using expression (2.3-10) for the LMS average step size in

(2.3-3) with a 2 = 1/2 we have

TCa LMS (2.3-11)TCLMS 2
PLMS (ElX(k)l) 2 a

In [41 the classical LMS convergence time estimate is given

by:

TCM = in 10 (2.3-12)T 4LMS xx

Based on the simulation described in appendix A we select

aim = .555.

Fig. 2.3-2 presents a comparison of simulation results

with the classical convergence time formula, (2.3-12), and

the new convergence time formula, (2.3-11). This figure

indicates clearly that the convergence time depends upon the

number of weights, Na, as developed in (2.3-11), and that

this formulation is more accurate than that of (3.2-12) which

was developed in reference [4]. In a similar way (2.3-6) and

(2.3-3) gives

TC SL S  a S(2.3-13)
SLMS aEIx(k)I
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Fig. 2.3-3 presents a comparison of (2.3-13) with simnula-

tion results, with a LM 1.4, based upon the results of

simulations described in Appendix A. The comparison confirms

(2.3-13). The key formulas of this section are included in

Table 2.6-1,
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2.4 STEADY STATE ERROR AN'D MISADJUSTMENT

In order to evaluate the steady-state error we start with

general relationships. First following [l, 4, 3) we define the

weight noise v.(k) as:

vi(k) = ai(k) - a. (2.4-1)

where a. is the optimal ith weight.

.. N -1 N -ia a -
y(k) Z a.(k) x(k-i) = Z a i x(k-i)

i=0 i=

N -1
a

+ E v. (k) x(k-i) (2.4-2)
i=0 1

Define

N -i
as(k) = y(k)- s(k) = a (k) x(k-i) -s(k)

1=0 i

N -1
a

+ E v (k) x(k-i) (2.4-3)
i=O

We can now define the optimal instantaneous error:

N -1

(k)= E a i x(k-i) - s(k) (2.4-4)
i=O

Using this value the minimum mean squared error is:
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- ----

in E {e5*(k) 2}, with k in the steady state. (2.4-5)

From (2.4-3) and (2.4-4) it follows that:

J = J(k)J k in the steady state

E{{E (k) + E v.(k) x(k-j)}2
* 1=0 1

N -1
a2 a

E e{ (k)} + E[2 Z v.i(k) c (k) x(k-i)}
S i=0

+ ~ ~ ~ ~ 1 E EE v W v ()x(k-i 1 )x(k-i 2

(2.4-6)

The foregoing assumes:

(a) The expectation of v i (k) x(k-i) is factorable.

(b) E{v.i(k)v i(k)J v 6-V

where 6.. 0 {

Assumptions (a) and (b) appear to be well justified in the

case of a correlated reference signal, as. confirmed by the

agreement obtained between the derived formulas and the

simulation results.
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The second term of (2.4-6) can be factored:

{vi(k) es(k) x(k-i)} = E{vi(k)}" E{ *(k).x(k-i)} (2.4-7)

*

However, E{ s(k) x(k-i)} = O(because of the orthogonality of
s

the optimal solution) so that the second term is zero and

(2.4-6), using assumptions (a) and (b), becomes:

N -l1a
Jss = Jmin + E v E{x(k-i) x(k-i)}

i=O

J. + Nav R (0) (2.4-8)

We now define the excess MSE as follows:

e = Jss - Jmin = NaV R xx(0) (2.4-9)

and the Misadjustment as:

M = e =NvRxOa R(2.4-10)
Jmin Jmin

the foregoing depends upon Jmin' Na'V , and Rxx(0). R xx(0)

depends upon the statistics of the input. Jmin depends upon

the input statistics as well as N.. However, v depends upon
a

the nature of the specific algorithm and will now be considered

for the SLMS and FSC algorithms.
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From (2.4-1) and (1.2-6) we have:

A

v i (k+l ) = v i (k) - Pa Vai (k) (2.4-11)

Squaring both sides we get:

2 2 2 "2v. (k+)- v. (k) + 1ai V (k)-2u v.(k) V(k) (2.4-12)

For the SLMS algorithm:

vi(k) !k) = v.(k) Er (k) Sgn lx(k-i)} -

1r

N -1
* a

V v(k)r{ (k) + Z vj(k)x(k-j)} Sgn {x(k-i)} (2.4-13)z r j=0

where

Wr(k) = y(k) - r(k) (2.4-14)

and

N -1
, a 

C r(k) = a. x(k-i) -r(k) (2.4-15)
i=O 1

Cr(k) and £r(k) depend on the reference signal r(k), and in

many cases, including the correlated reference case, those

errors and the previously defined e (k) and £Y(k) have

completely different statistics.
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I

v.(k) and x(k-i) are independent of £r(k) so we have:
1r

E {v i (k)(k) Sgn {x(k-i)}} =

E {e*(k)} - E{vi(k) Sgn {x(k-i)}} = 0 (2.4-16)
r 1

we get:

Nai

E{vi(k) V (k)} Z E{vi(k)vj(k)x(k-j)Sgn{x(k-i)}}
" j=0

(2.4-17)

Using assumptions (a) and (b) in (2.4-17) we have:

JA
E[v i (k)' Ik)J = v Elx (k) (2.4-18)

taking the expectation of (2.4-12) in the steady state and

using (2.4-18) we have:

Efv2(k+l)]=E[v2(k)] + 2aE{2 (k)Sgn 2[x(k-i)]}i a r

a x(2.4-19)

* In the steady state E[v2(k+l)] = E[v2(k)] and

-7
from (2.4-19) we can express v as:

a r (2.4-20)

2 E x(k)j
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,/

Now we can insert (2.4-20) to (2.4-10) and get:

2a NaE[c2(k)] Rxx(0)

M a r ( (2.4-21)
2 Jmin Ejx(k)j

E[ 2 (k)] depends upon the type of reference used. For the
r

correlated reference we have:

£ (k) y(k) - r(k) y(k) - [s(k+l) + n(k+])] (2.4-22)

r

By squaring and taking the expectation of (2.4-22) we get:

E[ 2 (k)] = E{[y(k) - s(k+l)] 2 + E[n 2(k+l)]r

- 2E {y(k) n(k+l) - s(k+l) n(k+l)} (2.4-23)

In the third term of (2.4-23), n(k+l) is independent of s(k+l),

and the present output y(k) is independent of the future noise

n(k+l), so this term's expectation is zero. Because of the

correlation of s(k+l) and s(k), which is a basic requirement

for the use of the correlated reference, the first term of

(2.4-23) will be:

E{[y(k)-s(k+l) ]2 = E[y(k)-s(k) ] 2  E[ 2 (k) 3= J

(2.4-24)
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For stationary noise we have

R (0) = E[n 2(k)] = E[n 2(k+l)] (2.4-25)nn

Using (2.4-24) and (2.4-25) and the above reasoning about the

3rd term, (2.4-23) becomes:

E Le (k)] J + R (0) (2.4-26)r ss nn

For reasonable processing gain J ss<<R nn(0) and

E [2 (k)] =R (0) (2.4-27)

The optimal processing factor (PF) of a filter is defines as:

R (0)
PF = nn (2.4-28)

Jmin

PF express the optimal noise reduction possible by an optimal

filter of order N . PF depends upon Na and the signal sta-

tistics, and does not depend upon the adaptation algorithm

and the adaptation gain.

Inserting (2.4-27) into (2.4-21) we get:

M aaNR (0) Rxx (0)

M 2 Ejx(k) J min

Using definition (2.4-28) in (2.4-29) we get:
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M a aNxx (0)
2 EIx(k)I (2.4-30)

Fig. 2.4-1 presents a verification of (2.4-30), using simula-

tion results with several values of USLMS, Na' and the input

power R xx (0).

* -Equation (2.4-30) was derived for the SLMS algorithm. To

derive an equivalent expression for the FSC algorithm, we use

(2.4-30) and the relationship between the FSC and the SLMS

algorithms given by (2.2-21). The case of greatest interest

is that of a low signal to noise ratio, for this case we can

use the approximation given by (2.2-22). Inserting p eq from

(2.2-21) into the SLMS relation, given by (2.4-30), with the

use of (2.2-22), results in the following:

M = PFSCN a Rxx (0)
M]2 PF (2.4-31)

.2[Elx(k)l

Equation (2.4-31) provides an estimate of the misadjustment

of the FSC algorithm and Fig. 2.4-2 illustrates it's agree-

ment with the simulations. It should be noted that because

of the approximation of (2.4-31), the accuracy of (2.2-22), and

the accuracy of (2.4-31) should improve for lower signal to

noise ratios.
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2.5 DESIGN CONSIDERATIONS

The design problem of a FIR adaptive filter involves the

following major points:

(a) Selection of an algorithm: LMS, FSC, SLMS.

(b) Determination of the order of the filter, Na
a-i (c) Determination of the adaptation gain, a"

The discussion which follows does not consider the following

points:

(a) A possible IIR filter solution.

(b) Implementation details.

(c) Minimization of a given design criteria, such

as: cost, volume, weight ... etc.

The adaptive filter is usually part of a larger system which

sets its design requirements. The adaptive filter specifica-

tions that we consider here are: a desired processing gain

and an upper limit to the convergence time. The additional

information required for the design is some specification of

the expected input signal to the adaptive filter. Realizing

that a complete analysis of adaptive filter behavior is not

possible for complicated signals, we consider a design proce-

dure based upon simulation and a graphic presentation of the

adaptive filter properties, the adaptive filter operating

characteristic (AFOC) as defined in section 2.1. As an

.example, we considered enhancement of a single sine wave of

unknown frequency with a signal to white noise ratio of 0 dB.

The desired processing gain is 8 dB and the allowed convergence

time is 100 iterations.
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Table 2.5-1 outlines the suggested design procedure and

presents the application of this procedure to the foregoing

example. Since we do not specify implementation details,

step (6) of the procedure cannot be carried out for the

example. Hence the example is done for the SUMS algorithm

only.
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Table 2.5-1
FIR Adaptive Filter Design Procedure

Step Description Example

1 Define a test signal (or Sine wave plus white
Test several test signals) for noise with signal tc
Signal which the filter performance noise ratio of 0 dB.
Selection will be evaluated. The dyna-

mic range of the input signal
should be considered at this
point, and might influence
the selection of the test
signals. The test signal
might be average, worst case,
or several typical signals.

2 Use simulation to generate an Fig. 2.5-1
Simula- Adaptive Filter Operating
tion Characteristic (AFOC) with

N as a parameter for the
LAS, FSC, SLMS algorithms
for each of the test signals
selected in step 1.

3 For each of the algorithms In Fig. 2.5-1 we
Determin- draw, on the AFOC plots, select N =14
ation of lines for the desired pro- a
N for cessing gain and conver-
each gence time. For each al-
test gorithm select the small-
signal est number of weights that

meets the requirements.
At this point the designer
might consider trade-off
in Na , PG, TC.

4 Since each curve on the Fig. 2.5-2 we select
Determin AFOC is constructed for a.004.
ation of several values of U , one a
u for can use this data a~d the
each values of N a TC and PG
test selected in step 3 to
signal determine the appropriate

value for the adaptation
gain.
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Table 2.5-1 continuted

Step Description Example

5 Using the information from all Fig. 2.5-3 we have
Select the test signals we need to:* PG=7.9 dB, TC=114.
optimal (i) Select a single N and ua This performance is
para- for each algorithm, a marginal and a
meters (2) For the three algorithms higher order filter
for each evaluate the performance with should be considered
algorithm this N*, p* for each test

signal. a
(3) Determine for the LMS and
SLMS algorithms whether ad-L 1 justment for dynamic range is
required.

6 At this point in order to
Selection complete the specification of
of the filter the designer can
algorithm compare the resulting com-

plexity of the three candi-
dates and select the best one.
The decision depends upon
implementation details.
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2.6 CONCLUSION

The simplified gradient estimation algorithms, FSC and

SLMS, have processing gain and convergence time similar to

the classical LMS algorithm as shown in section 2.1. This

similarity of performance has been confirmed when all the

filters which were compared have the same order, Na . Thus,
a

when one considers the implementation savings of the simpli-

jfied algorithms, the comparison favors the simplified ver-
sions.

Analytical comparison of the algorithms is possible using

the results in sections 2.2, 2.3, and 2.4, which were developed

for the adaptive line enhancer.

A summary of these properties is presented in Table 2.6-1

and compared with the LMS algorithm properties taken from

[4].

Since Eix(k)J= k /R-(0), it is clear from Table 2.6-1
xx

that the dynamic range of the FSC algorithm is the best,

because M and TC are not functions of R (0). The LMSxx

algorithm has the poorest dynamic range, since M and TC

depend on R xx(0). The SLMS algorithm is in the middle

since M and TC depend on the square root of R xx(0). Fiq.

2.6-1 presents the dynamic range properties of these

algorithms. Finally a sistematic approach to efficient

adaptive filter design has 'een outlined.
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Table 2.6-1

Summary of Algorithms Properties
Derived for ALE Example

Misadjustment-M Convergence Time-TC Stability Limit

(see note 2) (Eq. 2.3-12, (Eq. 2.2-20)
see note 1)

a NaR (0) 1.65
FSC aax,aPF2/Na2(Elx(k)I) a

(Eq. 2.4-31) (Eq. 2.3-7) (Eq. 2.2-23)

a aNaRxx (0) 
1.4

SLMS 2x(k) IPF I t I Ix (k) 2/EN Elx(k)J]

(Eq. 2.3-14 with
(Eq. 2.4-30) OSLMS = 1.4) (Eq. 2.2-17)

R (0)

PF =nn J min

Notes:

(1) A new LMS convergence time estimate, using (2.3-11) with

aLM = .555, is given by:

TC 0.555 a

a E Ix (k )  Rxx(0) aa

(2) The LMS relationship taken from [4] with modification

for the ALE example. This modification is similar to

the derivation of (2.4-30).
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III. RANDOM SEARCH IIR ADAPTIVE FILTERS

3.1 IIR PERFORMANCE SURFACE

The performance surface of the IIR filter is much more

complicated than the FIR performance surface because of the

* feedback of previous output values used to form the present

output.

Consider the filter:

Na-1 Nb

y(k) = Z a.x(k-i) + E b. y(k-i) (3.1-1)
i=0 1 i=1

and the error e (k) = y(k) - s(k); . The MSE performance

surface is given by:

N -1a
J({a. }, {b}) = E[ 2(k)] = E{[ E aix(k-i)

1s i=0

Nb

+ Z biy(k-i) - s(k)]2} (3.1-2)
i=l

In (3.1-2) k is large enough for operation of the filter to

be in steady-state.

Manipulating (3.1-2) we get:

N -i N -1a a
J({ai}, {bi}) =E a. a R xx(i-j) (3.1-3)

i=0 j=0

Nb Nb Nb
+ E E b. b. R (i-j) + R (0)-2 Z b. R (j)
i=l Y1 s =1 3 sy

N-1 N N-i

a ba+ 2 Z E a b. R (i-j)-2 E a.R (i)i=0 j=l 3 xy i=0 i sx
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where the correlation functions are:

Rxx (m) = E x(k) x(k-m)]

Ryy (m) = Ely(k) y(k-r)]

Rx (m) = E[s(k) x(k-m)]

R (m) = E[s(k) y(k-m) ]

sy

Rxy (m) = E[xk) y(k-m) ]

R Rs(0) Els(k) s Ik)J

Equation (3.1-3) appears to be quadratic in the weights, but

actually Ryy(m), Rxy(m) and Rsy(m) also depend on the weights.*

The dependence of the performance surface (3.1-3) on the

weights is of high order, and the surface has several minima,

only one of which is the global minimum. To demonstrate the

complexity of this performance surface consider the simple

filter:

y(k) - ax(k) + by(k-l) (3.1-4)

One can recursively insert successive expressions for y(k-i).

Thus:

y(k) = ax(k) + b[ax(k-l) + b[ax(k-2) + b[ax(k-3) +

(3.1-5)
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or in a compact form:

k
y(k) = a Z bi x(k-i) (3.1-6)

i=0

J(a,b) = E{[y(k)-s(k) 2 }

2 k k
= a Z E bibj E[x(k-i)x(k-j) 3

i=0 j=0

k
+ E[s (k)] - 2 a E b E[x(k-i) s (k)]

i=0

.2 k k i+
'a E bj R (j-i) + R (0)i=0 j=0

k
2a E b R sx(i) (3.1-7)

i=0

Since Rxx(m) and Rsx(m) do not depend on the values of the

weights a,b the degree of the performance surface given by

(3.1-7) is already 2k for b and quadratic in a. When the

filter operates for a long time, k - - and (3.1-7) is an

infinite sum and an infinite degree polynomial.

Elliott, Jacklin and Stearns, [251, presents an expres-

sion for the performance surface which is derived for the

general case, with Na forward weights and Nb backwards weights,

this expression is similar to (3.1-7).

The general case also has quadratic depencence on the a's

and infinite polynomial dependence on the b's. Thus the

use of gradient search methods to optimize multimodal

performance surface can be expected to result in a steady

76



state around one of the minima point which is not necessarily

the desired global minimum. The steady-state minimum point

depends upon the initialization of the adaptive filter. This

behavior has been demonstrated for the Stearns' algorithm

by Parikh and Ahmed. [131

7 I
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3.2 THE RANDOM SEARCH CONCEPT

A random search method consists of evaluation of esti-

mates of the performance surface at discrete sets of the

filter weights. After evaluation of these performance surface

estimates, a comparison is made and a minimum point is

selected.

The method of selection of filter weights for whi-th the

performance surface estimate is to be evaluated, is very

important. In order to have a useful adaptation scheme for

.1 non-stationary input signals a continuous search method is

needed, in contrast to possible two phase method that has a

global search phase and then fine tuning. From the several

* methods in the literature [19, 20, 21, 23, 30, 31, 33, 36]

the needed continuity of operation is provided by the moving

center method.

The center is the point in the parameter space {W. with

the lowest estimate of the performance function among the

points that have been tested so far. The set of filter

* weights (or in general, system parameters) to be tested, at

the Ith random search interval, W}2 ,is given by:

W W "t+ )zg for all i (3.2-1)

where:

i is the parameter index

[W i ) is the value of the center at the Zth random search

interval, W itis its ith element
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g is a number independently generated for each weight from

a gaussian random number generator, with zero mean and

unity variance

V>O determines the range covered by one step of the search

and is taken to be the same for all weights which need

not be the case

{ Zis a set of randomly selected parameter values

around the center point {V? } I, during the 2Zth random

search evaluation interval. W.i~ is its ith element.

The test point (the set it }) is tested; that is the

value of the performance surface, J9.1 is estimated as it", and

compared to the current center estimated value, Ji

if J k. < jk, a new point in parameter space is selected

using equation (3.2-4). If < Jthe test point corresponds

to a lower performance surface value estimate, and the center

moves to a new location; that is we set W. - for alli,2.+k

i. Now (3.2-1) is used again to evaluate another point to be

tested.

Fig. 3.2-1 presents a two parameter example of a moving

center random search process. It should be noted that Jand

Sare only an estimate of the performance surface points J~

and JXbecause the latter properly involves averaging over an

infinite ensemble.

In order to use the random search method in adaptive

filters we need to specify the performance function and to

define some estimate of that function. Since we are comparing

the performance function and not evaluating it's gradient one
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can select a complex non-analytic performance function. This

possibility might be used to great advantage. However, in

the following discussion we use the standard criteria of

minimum mean squared error.

To evaluate an estimate to the performance surface we

use two filters in parallel. One uses a set of weights that

are the current center, so that this filter produces the

output, y(k). The second set of filter weights correspond

to a test point in the weight space. The filter output at

the test point, y(k), is used only during the adaptation

process.

The performance surface estimates are a time average, which

is the only reasonable estimate of the ensemble average that

we can calculate on line, and are given by:

J [y(k-j) - r(k-j)] 2  (3, 2-2)
j=0

Z R-1 2

= 1 y(k-jj - r(k-j)1 (3.2-3)

j=0

where R is the number of input samples used to estimate the

performance function for a given random search interval.

We have two types of iterations. First filter iterations

which process each new input sample with a fix set of filter

weights and produce the outputs y(k) and y(k). The second

type of iteration involves the random search selection of a

new set of filter parameters which occurs after R filter
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iterations. For each random search interval a new set of

parameters is selected and tested. Fig. 3.2-2 presents the

relationship of filter iterations to the random search in-

terval.

Fig. 3.2-3 presents a flow chart of the basic random

search adaptive filter algorithm.

82



-771

Filter Iterations At this point the
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3.3 OPERATION OF THE RANDOM SEARCH ALGORITHM

We now use the random search algorithm presented in

Fig. 3.2-3 to implement an adaptive IIR filter. The filter

operation is given by:

N -i Nbab
y(k) = Z a.(k)X(k-i) + Z bi (k)y(k-i) (3.3-1)

Si=0~ i=11

The weights (ai (k)} and tbi (k)} are functions of time and

their variation is controlled by the algorithm of Fig. 3.2-3

and equation (3.2-1).

Details of the simulation are given in Appendix A.

Fig. 3.3-1 presents the operation of a random search IIR

filter with Na=3, Nb= 2, -a=01' Pb=l"

We now discuss these results starting with some basic

filtering considerations.

The poles and zeros of a filter should be located so that the

desired spectral components pass through the filter and the

unwanted components are rejected.

For an adaptive filter we also need to match the filter

output amplitude to the reference signal amplitude, that is

there is a gain factor which must be adjusted accurately in

the adaptive filter.

The filter (3.1-1) has the following transfer function

MnZ (z-qi)
H(z) = 0 i=1 (3.3-2)

Mnz (z-pi)

i=l
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where:

qi are the filter zeros. There are Mz zeros.

pi are the filter poles. There are M poles.

0pThe parameter a controls the gain of the filter. For the

adaptive filter we can't use the concept of transfer func-

tion because the filter weights are time varying. However

we can consider an average steady state transfer function

with weights that are the mean of the time varying weights.

Thus a is required to match the filter maximum output magni-

..tude to he reference amplitude. Tn order to enhance a desired

spectral component the filter should have a pole (or poles)

near the spectral component, close to the unit circle. The

effect of this pole on a signal at the same frequency would

be to multiply its amplitude by a gain factor of (l/l-p)

where p is the pole's magnitude. Thus the output of the

filter at the pole frequency is given by a0/(l-p) times the

magnitude of the input signal multiplied by a factor which

depends upon the location of, the other poles and zeros. If

this output magnitude is to be equal to the reference signal

amplitudea 0 /(l-p) must have a specific accurate value

because all the other factors that determine the output

-amplitude (namely the location of the other poles and the zeros)

* * have only one optimal value and thus for the steady-state

near optimal filter are fixed.

For good selectivity p is only a little smaller than

unity, andab/(l-p) is the ratio of two very small numbers.

It is difficult to achieve accuracy for this ratio with
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random search adaptation on the forwardweights (the a's)

and the backwards weights (the b's or the poles).

As a result of the mismatch of filter output and refer-

ence signal amplitudes, decision mistakes occur when com-^

paring the performance function estimates, J. >< J,, with

the result that a bad set of weights is sometimes chosen.

Thesedecision mistakes qause.slower_:convergence and smaller

value of the steady-state p-(which means lower processing

gain)., and possible instability. This type of behavior was

experienced in our simulation. One solution that we tried

was to use smaller variance for the search on the feed-

forward weights. This approach turned out to be inferior

to a new approach (which is presented in the next section)

based on the use of gradient search on the feedforward

weights and random search on the feedback weights.
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3.4 RANDOM AND GRADIENT SEARCH (RGS)

The fact that the IIR filter's performance surface is

a quadratic function of the feedforward weights, as dis-

cussed in section 3.1, means that for non-varying feedback

weights the performance surface with respect to the a's is

unimodal. A unimodal surface may be handled best using a

gradient method, and it is possible to achieve any desired

accuracy to overcome the problem of the purely random

isearch scheme discussed in section 3.3.

Widrow and McCool [5], have compared a random search

technique for a FIR filter with the LMS algorithm. The

random search technique used was tailored to the unimodal

situation and, nonetheless, resulted in inferior perfor-

mance compared with the LMS steepest decent gradient search.

The question is how to make the feedback weights con-

verge first, so that the feedforward weights would then

converge to the global minimum.

The cascaded arrangement, as shown in Fig. 3.4-1 is

suggested. The all pole section comes first, and is

adaptively controlled by a random search algorithm. A

second all zeros section is then adaptively controlled by a

gradient algorithm to produce, with suitable values of the

adaptation gains, the desired effect of pole convergence

followed by zero convergence.

The optimal values of the adaptation gains is a com-

promise of two contradicting considerations. The first factor

is the requirement that the poles converge faster, and calls
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for low U a- The second factor is a desire to maintain enough

randomness in the weight adaptation process so that we have

* a reasonable probability of trans-ItiL'n from a local minimum

zone to the global minimum zone. The effect of the later

I factor depends upon the specific shape of the performance

surface.

The internal signal *(k) has, at least during the pole

I convergence, non-stationary characteristics. In particular,

K j the magnitude variations of f(k) are important to the

adaptation operation in the all zero section. As discussed

in section 2.6 the FSC algorithm has no dynamic range limita-

tions so that it is ideally suited for the RGS algorithm.

The RGS algorithm is presented in three ways: Fig. 3.4-2

presents its flow diagram, Fig. 3.4-3 presents its block

diagram, and Appendix B is a FORTRAN realization of the RGS

algorithm. Fig. 3.4-4 presents typical operation of this

algorithm and shows the convergence and steady-state operation

of the filter. Some further analysis and more simulation

results are included in the next section.
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3.5 CONVERGENCE OF THE RGS IIR FILTER

Convergence of the RGS IIR filter is composed of two

processes: the random search on the feedback weights, and

the gradient search on the feedforward weights. These

processes are coupled through the cascade structure of the

filter, the common error expression and the dependency of

the feedforward weights on the poles magnitude, as dis-

cussed in section 3.2. In order to analyze this situation

we first assume independent operation and analyze each of

the sections separately. We then combine the convergence

time estimates with a correction factor to account for the

fact that both processes converge simultanously.

Consider first the analysis of the random search algor-

ithm used in the RGS IIR filter in a general environment.

In the simple case of single parameter, W, define the

convergence zone:

*

w- W I < (3.5-i)

where:

W is the parameter, W, at the Lth random search

interval. W is the optimal value of W (the global mini-

mum of the performance surface)

AW>O is the limits of the convergence zone around W

A test point is selected by:

WX = W , + P g (3.5-2)
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where:

W is the test point in the random search's Ith interval.

p>o is convergence control parameter adaptation gain.

g is a number generated by N(1,0) random number generator.

The probability density function of W given WI is:

~ 2/ = 1 (W -W)
<P M 9/W ) = exp[- 21 1 (3.5-3)

/27p 2U 2

and the probability of selecting a test point in the conver-

gence zone is:

~ , W +W ~
P PrIW - W I < AW/W ] = f P(WZ/W)dW (3.5-4)

W -AW

Fig. 3.5-1 illustrates the situation and the probabilities

defined above.

Selecting a correct value for W. is not enough. After the

testing of this point we need a correct decision that the

tested point is better than W . Thus we have the estimates

J. and J., and the selection of the correct weight depends

upon their comparison. The probability of a correct decision

depends upon the values of J and J,, their difference, and the

estimation parameters, mainly R. To simplify the analysis we

define PCD(L) as the probability of a correct decision given

* W., averaged over all possible values of W .

We can write the probability of convergence to the con-

vergence zone (3.5-1), 8 +l at the (2+i) random search interval,

given W, as:
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sielection of W in 3.P r mcorrct WdecionJ =
+1  Pr the convergenc& zone t+l= 2

p PcD(() (3.5-5)

The probability, Q, that the process does not converge in

the first L iterations is given by:

no converqence no cony. in
= [in the 1st j p [ . I

xR.S. interval r sec. inter.

no cony. in k

"r [£th inter. = I [1-ei] (3.5-6)

The probability, P., that the process does converge in the

first L iterations is given by:

19 (3.5-7)P2= -. = 1 - II [i-8 i]1351-
i=l

So far we have discussed the single parameter case. It is

now convenient to introduce the general case, namely M

parameters. We can define the multidimensional convergence

zone as given by:
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where:

is a vector of M parameters, Wi 1=1,...,M.

W is a vector of optimal values, W. i=l,...,M.-- 1

AW is a vector of deviations from the optimal values of

the parameters defining the convergence zone.

II II is a norm defined on the parameter space.

The multidimensional version of (3.5-2) is given by:

= + PG (3.5-9)

where:

G is a vector of M independent random numbers each of

I which is N(1,0).

Because of the independence of the parameters a multi-

dimensional version of (3.5-4) is given by:

M
.= Pi £ (3.5-10)
=1 I

where P ik is the single parameter probability given by

3.5-4.

The probability of convergence to the convergence zone at

the £+1 iteration given W. is given by:

+ PCD( (3.5-11)

99



Equations (3.5-6) and (3.5-7) remain the same for the multi-

parameter case. An essential property of any optimization

algorithm is it's ability to converge to the optimum. We

*ill now prove that the random search algorithm used in the

RGS filter, converges to the convergence zone defined in

(3.5-8). To observe this point we examine equation (3.5-7).

Since (1-ei) is a number always less than 1, the multiplication

(l-e.) becomes smaller as I increases. Thusi=l 1

P =lim Pit = 1-lim { I [i-Oi]} = 1-0 = 1 (3.5-12)

PO = 1 means that after enough time the process converger to

the convergence zone of the global minimum; that is, conver-

gence with probability 1. Equation (3.5-12) does not provide

quantitative information, namely an estimate of the convergence

time. This problem is treated later in this section.

Fig. 3.5-2 presents the results of a parameter identifica-

tion experiment, the details of which are presented in Appendix

A. This example was taken from reference [11] where it was

used to demonstrate how Feintuch's algorithm converges to a

point on the performance surface which is not a minimum. Ref.

[13] uses the same example to demonstrate how Stearns' algori-

thm converges to either a local or global minima depending

upon the initialization point. Our results show that the RGS

hIR filter converges to the 4lobal minimum even when started
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for details of the simulation.
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in a local minimum point. Fig. 3.5-2 presents two experiments

with typical convergence.

The adaptation of a random search process has two types

of parameter changes, or steps:

- zone transitions - where after the movement, the

center is near a new minimum

- small steps - where after the movement, the center is

near the same minimum.

Fig. 3.5-3 illustrates the two step types. In signal filtering

it turns out that the performance surface values at the local

minima are typically much higher than at the global minimum,

as shown in Fig. 3.5-4. This difference in the performance

surface value means that the random search process, when

comparing values of the performance surface estimations,

is insensitive to the local minima. In terms of step types,

we neglect the analytically complex zone transition steps

and analyze the situation typical of signal processing

applications, assuming convergence with small steps only.

We can define, for the general case of equation (3.5-9),

the average step size, Sav, as:

Say =E[Wi Wi(3.5-13)

where: Wi,£+1 and Wi, are the ith component of W+i and

W respectively.

Using (3.5-2) as the equation for each component of (3.5-9)

we have -

Wi Wi, = ;g (3.5-14)
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Since in small step convergence the direction of convergence

is always in the same direction towards W , on the average

only half of the test point are accepted, that is those

where gIO (or those with pg<O). This assumes no decision

errors when comparing two points. Using the above reasoning,

from (3.5-13) and the definition of g=N(l,,O) we get:

S~v f e-g p(g) dg =2 f 2 /2 =- (3.5-15)iY 0 oo 4g pT)dg=roI - dg /-

The above analysis ignores the coupling of the M parameters

through the common error expression. At any interval one

of the parameters is dominant, that is it contributes to the

error term more than the others. As a result the correction

of the value of this parameter dominates even though the

changes in the values of the other parameters may be in the

wrong direction.

Practically the value of a parameter can be expected to

jitter around some value until this parameter becomes the

dominant one. Then it's value would be corrected (and other

parameters would jitter). If all the parameters were dominant

for equal portions of the process the average step size would

be l/M of that given by (3.5-15), but parameters with larger

numerical value get more attention, and the reduction in the

average step size is given by:

sD = -- _ (3.5-16)
-3v ma6 /2

D
Say is the average step size for the dominant, large
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valued, parameter. 0<% <1 is unknown factor.

Assuming that there is a correct decision, the mean num-

ber of random search intervals needed for convergence is

Wa/Sav, where Wmax is the value of the largest parameter;

W0 max
TC = l ax R (3.5-17)

av

where: a1 is a proportionality constant that depends upon the

-1exact definition of TC (10%, e of initial error,

etc.)

TC in (3.5-17) is given in filter iterations. We can combine

(3.5-16) and (3.5-17) and include 27 in a1 to yield:

W
TC= i max .Ma. (3.5-18)

Equation (3.5-18) provides a convergence time estimation

for a general case of random search operation with the above

assumptions. Let us turn now to the RGS IIR filter and get

a specific expression for its' convergence time estimate.

For the RGS IIR filter case equation (3.5-18), in terms of

the algorithm parameters as defined in section 3.3, becomes

b
TCb = 1 1 aNb O %R (3.5-19)

To get an estimate to bmax we consider the transfer function

of the filter given by equaiton (3.1-1):
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*N -i N -ia -i a -1

E a.z Z a 2i=0 1 i 1

H(Z) = Nb Ns - 2 - (3.5-20)

1- Z bI z-  f (l+2pj~j -p z
i=1 j=l j

where:

Ns is the number of 2-order sections of the filter, Ns=

P. is the magnitude of the jth pole

= cos(2Tf/fS)

f - pole frequency, fs - the sampling frequency.

For a stable filter p.<l and the largest possible bmax' is

given by additions of the terms 2p.~. which is the coefficient

of z - when the multiplication of (3.5-20) is expanded

N N
b =max E 2P.j < = sl 2 = 2N8 = 2(Nb/2) = b (3.5-21)

mxj=l b"2  N

Inserting (3.5-21) to (3.5-19) gives:

N 2
TCb = 1  Ub R (3.5-22)

where:

a 2 = a0 + 1 is expected to be in the range 1<a2 <2.

Equation (3.5-22) estimates the convergence time of the feed-

back portion of the RGS IIR filter. To estimate the conver-

gence time of the feedforward portion we can use the FSC

relation (2.3-1). As discussed in section 3.3, the largest
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value of a feedforward weight should be proportional to (1-p)

a max = 03(l-p) (3.5-23)

where p is the pole's magnitude. In addition to the dis-

cussion of section 3.3 which relates the gain factor a to the

dominant pole magnitude p, it is also noted that the adapta-

tion gain is also related to the pole magnitude because the

smaller the adaptation gain the finer the control of the

ratio a /(l-p) and the closer the pole magnitude can be
0

adjusted to the unit circle. Thus we write the following

relationship:

(1-p) = a4'a (3.5-24)

where a4 and a 5 are proportionality constants. Fig. 3.5-5

shows the transient and steady state values of the pole

magnitude for several values of 4 a* The non-linear

relationship between p and pa as suggested by (3.5-24) seems

to be reasonable.

Combining (2.3-1), (2.3-4), (3.5-23), (3.5-24) and value

of ai1=/2 in (2.3-1) we get:

TC=~a max INaa = '6 a a (3.5-25)

We now determine the convergence time for the RGS IIR filter

by adding (3.5-25) and (3.5-22):
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010 &2" OLV a 7 are experimentally evaluated constants. The

values of a I and m6 can be adjusted to compensate for the

simulataneous convergence of the all pole and all zero sections

of the RGS IIR filter.

A special difficulty encountered is to confirm the de-

pendence of the random search convergence time upon the

number of weights, Nb in the random search process. A

change in the number of feedback weights in the RGS IIR

* filter (with or without changing the input signal) causes

major changes in the nature of the problem to be solved. For

example if there are more poles than necessary, only one of

them needs to converge, and the others are cancelled by the

zeros. Any experiment in which the number of poles is varied,

(with or without changing the signal) will combine the effects

of changes in the nature of the problems to be solved, the

effect of any changes in the input signal statistics, as well

as the effect of more parameters upon the random search con-

vergence time. A simpler approach is to construct a random

search FIR filter and to use this filter to verify the analysis

of the random search process and the dependence of its con-

vergence upon the number of weights.

We start with relation (3.5-18) using FIR notation. Thus

ama ~N R (3.5-27)Ua a
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From Treichler (37] we have:

SNRamax 1+. 5N SNR (3.5-28)
a

where SNR is the input signal to noise ratio.

Inserting (3.5-28) to (3.5-27) gives:

SNR • N • R
TC = a (a+.5Na (3.5-29)

I 1+5Na SR ia

Fig. 3.5-6 presents a comparison of simulation results with
convergence estimate (3.5-29) for several values of N , with a

a o

and a 1 experimentally determined as a0 = .4242, a1 = 1.557.

These, results verify the ability of equation (3.5-18) to

estimate the effect of the number of parameters on the con-

vergence time of a random search filter.

An important assumption used in the convergence analysis

of the RGS IIR filter was that the random search process does

not make mistakes in the comparison of J£ ><J£. In order

to define conditions for filter operation with no decision

mistakes we investigate the effects of the random search

interval, R, on the RGS filter performance. Fig. 3.5-7

* presents operation with decision mistakes. This situation is

typical in operation with relatively small random search

interval. In the example of Fig. 3.5-7 we used R = 100.

For larger values of the random search interval, R,

we have slower convergence as given by equation (3.5-26) and

illustrated by the pole convergence of Fig. 3.5-8- Fig. 3.5-8
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Convergence time dependance upon the number of weight simula-

tion and theory for a random search FIR filter. With Pa=.0075

R=300 for SNR=-3 dB.
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also shows that when the random search interval is too large

(= 800 in the example of Fig. 3.5-8) the pole magnitude

is smaller and the resulting signal processing gain is lower.

This unwanted effect is caused by decision mistakes that occur

because with a long random search interval the feedforward-

weights provides better match for the weights in the center

filter than for the tested filter for which the feedback

feedforward weights are only copied (Fig. 3.4-3). This effect,

of smaller pole magnitude, for long random search interval

depends on the convergence of the all zero section and hence
upon the value ofV a-

The above discussion suggests that there is an optimal

value for the random search interval, which depends upon the

value of vi a- From the results obtained in our experiments

it seems that for p a in the range of 30xl10- to 106 , the

optimal values of R are in the range 300 to 500 iterations.

To verify the convergence time estimate of equation (3.5-26)

we present experiments with several values of Pa (Fig. 3.5-9)

and several values of P~b (Fig. 3.5-10); all of them with R-500

to assure that the operation is practically free from decision

mistakes.

The effects of W a as discussed above are clear in Fig.

3.5-9:

(1) The steady-state value of the pole magnitude is

closer to 1 for smaller P a-

(2) The convergence rate of the feedforward weight is

proportional to P a
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RGS IIR filter operation for 3 values of P a The results are

simulation average of 32 runs with p b=.l and R=500.
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(3) The overall effect of the convergence and steady-

state value of the output MSE is a combination of

(1) and (2).

The effects of 1 ,b' as discussed above are clear in Fig.

3.5-10.

(1) The convergence of the pole is proportional to b"

(2) The overall effect in the convergence of the output

MSE is mainly the convergence rate.

It is interesting to note in Fig. 3.5-10 that the convergence

rate of the feedforward weight is equal for all the values

of Pb"

Table 3.5-1 compares the convergence time measured in

the experiments presented in Fig. 3.5-9 and Fig. 3.5-10 to

the estimation given by (3.5-26) *iih experimentally deter-

mined proportionality constants. The modified estimation

formula for Nb=2 is:

TC a203.12p "3392/N- + 3.8 R/Ib (3.5-30)

Table 3.5-1 shows good agreement between experimental

measurements of RGS filter convergence time and the esti-

mations of (3.5-30). This agreement verifies the analysis

of the RIS IIR filter convergence properties.
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Table 3.5-1

RGS Convergence Time Measurement and Estimation

(Results are an average of 32 runs with Na=3, Nb=2)

# Results Experiment Parameters Convergence Time
Presentation Ia 11b R MeasuredlEstimati353

-6
1 Fig. 3.5-9 30x10 .1 500 30,500 31,079V 2 Fig. 3.5-9 10x10- 6 .1 500 41,000 36,517

3 Fig. 3.5-9 3x10 - 6 .1 500 57,000 45,334

and

Fig. 3.5-10

4 Fig. 3.5-10 3x10-  .05 500 66,000 64,372
-6

5 Fig. 3.5-10* 3xI0 6 .025 500 100,000 102,448

NOTE

* Convergence time for #5 cannot be measured from Fig. 3.5-10

because only part of this experiment data is plotted here.
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3.6 APRIORI STRUCTURED ADAPTIVE FILTERS (ASAP)

Motivated by the possibility to reduce the number of

variables under random search adaptation, we now investigate

the relationship of the filter's weights to a smaller set of

variables. In some cases the structure of the optimal filter

is known and only a few parameters are unknown and need to be

evaluated. In other cases we might accept a sub-optimal

simpler solution, namely an optimal filter with structural

constraint. For the filter (3.1-1) we might have a smaller

set of parameters, W, such that:

II
a. = fi(W) i=0,1,...,N a- (3.6-1)

b. g.(W) i=l,2 ,...,Nb (3.6-2)

where: fi( -) and gi (-) are functions that connect each

filter weight to the parameter vector W.

Since we have a good solution to the feedforward weight

adaptation, it is acceptable to use the same combined random

and gradient search method that was used for the RGS IIR

filter, for the proposed ASAF filter as presented in Fig.

3.6-1.

We will continue the discussion by considering the speci-

fic case of a pole close to the unit circle with adaptation

of it's frequency only, see Fig. 3.6-2.

This type of adaptive filter is useful for the ALE

120



adapttionseto

(k) r~k)

AdapiveFilerdaStaFio

Random



Im

Adaptivye

Movement
of the pole

Re

W =1 cos (2t f/fS

f is the pole frequency

f is the sampling frequency
S

b, 2(,

2

Fig. 3.6-2

Apriori Structured Pole

Filter zeros are not shown.
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application, or when several such sections are cascaded to

enhance a multiple sine wave signal.

Fig. 3.6-3 presents a typical operation of an Apriori

Structured pole, ASPO IIR adaptive filter with pole magnitude

p - .99. Simulation details are presented in Appendix A.

It is clear from Fig. 3.6-3 that this filter has high

processing gain with relatively short convergence time.

These advantages are also shown in Fig. 1.5-1.
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TIME k.

C.* FEIDFORU$MD WEIGHT CONVUERGENCE

0 10000 20000 30000 40ifM 500 60000 70460 a*"$ 90016400
TINE K

LEGEND
- AVIERAGE OF SO RUNS
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Fig. 3. 4-3

Apriori Structured Pole (ASPOL) typical operation with N a=3,

Nb=2 , a=10- 6  0J~5 and R-500.
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3.7 CONCLUSION

An IIR filter has, in many cases, great advantages over

a FIR filter because of the efficiency associated with the use

of recursion and the existence of poles in the transfer func-

tion. However, realization of an adaptive IIR filter is a

difficult task because of the multimodal nature of the IIR

filter's performance surface, as well as the stability

problem and the complexity of the performance surface

gradient expression.

The proposed Random and Gradient Search (RGS) algorithm

overcomes the complexity of the multimodal performance sur-

face and converges to the global optimum with probability 1.

This convergence is guaranteed for sufficiently large time.

For the important special case of large difference in the

value of the performance function between the global minimum

and local minima, an estimation for the average convergence

time has been derived and verified by simulation results.

The convergence time estimate is given by:

N 2

TC = a 7 V + a I b • R (3.7-1)
boa a 11

where 06 a.7 al, 02 are experimentally evaluated constants.

* Stable operation of the RGS IIR filter was demonstrated

in many hours of computer simulation without overflow

problems. This stability is attributed to the detection of

excessive MSE at the tested points, and the fact that the

algorithm discards such points before overflow, which is

causes by unstable filter weights, can be developed. Thus

JL- 
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the RGS is a practical candidate to realize an adaptive IIR

filter.

The Apriori Structured Adaptive Filter (ASAF) uses the

random search method and additional structure information

to improve adaptive IIR filter performance. The moving

pole example, for instance, is guaranteed to be stable and

has fewer parameters in the adaptation process.
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IV. SUMMARY

Two approaches to efficient adaptive filtering have been

investigated; a FIR filter with simplified gradient estima-

tion methods, and IIR filters with a combined random search

and gradient adaptation scheme.

Two simplified algorithms, the Fixed Step Correction (FSC)

and the Simplified LMS (SLMS), are derived and compared to the

classical LMS algorithm for the FIR filter. The comparison

includes analysis of filter properties, and extensive simu-

lation results are presented to verify the analysis.

Because the adaptive filter properties depend upon the

statistics of the input signal, the desired signal, and the

reference signal, when analyzing the operation of an adaptive

filter one must assume some statistics for the above signals.

Hence, the analysis is valid for a specific case or a class

of cases.

Thus algorithm comparisons and the adaptive filter pro-

perties analysis has been carried out here for the applica-

tion of the adaptive line enhancement (ALE). The analysis

includes convergence time estimate, steady-state misadjustment,

and filter processing gain. Estimates to these properties

have been derived and verified by simulation results which

compare the three algorithms (LMS, FSC, SLMS). The conclu-

sion of the comparison is: that for equal filter order the LMS
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algorithm is somewhat better. However when one considers an

equal complexity, which allows the use of a higher degree

filter for the simplified gradient estimations, the result is

that the FSC and the SLMS are better than the classical LMS.

The IIR filter offers, in many cases, computational

savings over a FIR filter. However, the IIR filter has

a multimodal performance surface and may be unstable. Be-

cause of these two problems, and the complexity of the gra-

dient expression, the algorithms which have been proposed for

the IIR adaptive filter by Feintuch and Stearns do not provide

a satisfactory solution. The Random and Gradient Search

algorithm (RGS) proposed here has the ability to converge

to the global minimum of the multimodal performance surface,

and convergence with probability one is guaranteed for suf-

ficiently large time. For the important class of cases

characterized by a global minimum much lower than the local

minimum, an average convergence time estimate has been de-

rived and verified with simulation results. The use of

structure information of the optimal solution when known

allows the construction of an Apriori Structured Adaptive

Filter (ASAF). This version of the RGS IIR filter optimizes

a smaller set of parameters and is advantageous in some prac-

tical applications. In summary this research has demonstrated

that with the RGS scheme it is possible to realize an adaptive

IIR filter which will operate properly and have a practical

implementation.
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At the end of this dissertation it is appropriate to

indicate some of the subjects that call for further work:

In the area of FIR adaptive filters with simplified gradient

estimation, some topics are:

- Effects of finite arithmetic.

- The study of variations of convergence and steady-

state behavior around the mean.

- The dependence of convergence and steady-state behavior

on input signal to noise ratio.

- Operation with complicated signals.

- Extension of the discrete algorithms developed here to

analog systems, including adaptive antenna arrays.

- Consideration of non-stationary input signals.

- Applications.

In the area of RGS IIR filters, topics include:

-The study of random search decision error dependence

upon filter parameters.

- Analysis of possible processing gain dependence upon

filter parameters.

- The effects of c~peration with an inaccurate random

number generator.

- Possible configurations for apriori structured adaptive

filters.

- Operation with complicated signals.

- Consideration of non-stationary input signals.

- Applications
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APPENDIX A

SIMULATION

A.1 THE SIMULATION METHOD

Simulation was used to provide experimental data for

comparison of adaptive filtering algorithms, and for veri-

fication of analytic formulas. The simulation program includes

four basic functions:

(1) Execution initialization: Signal parameters (fre-

quency, signal to noise ratio, power,..etc.) and filter

parameters (filter type, number of weights, adaptation gain,

etc.) are loaded interactively into the computer to con-

trol the forthcoming execution.

(2) Experiment configuration and signals generation:

A signal generator subroutine, determined by the signal

parameters loaded in the execution initialization, prepares

sequences of 100 samples of input and reference signals to

be processed by a filter subroutine. The relationship of the

input and reference samples determines the adaptive filter

simulation to be evaluated, i.e. ALE or parameter identifica-

tion.

(3) The filtering function: As controlled by the filter

parameters loaded during the execution initialization, a

filter subroutine is called upon to process the data in blocks

of 100 samples.

(4) Experiment data extraction and storage: The program

stores the values of J(k) and 200 values (spread equally
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over the time of the experiment) of up to six parameters,

and at the end of the experiment the program evaluates the

processing gain and the convergence time for that experiment.

The foregoing information, together with the experiment

parameters, are stored on disk files and are available for

off-line use.

A simplified flow diagram of the simulation program is

presented in Fig. A.1-1. It should be noted that although

the FIR and IIR simulation programs have identical structure

there are some differences as discussed in sections A.2 and

A.3.

A data handling program is used to access the data files

and present experimental results in tabular or graphic forms.

The graphic option includes plots of variables as function

of time and as functions of a filter or a signal parameters.

The simulation was done on a PDP-11/50 minicomputer under

RSX-11M multiuser operating system.
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A.2 FIR SIMULATION PROGRAM

The FIR simulation uses the Adaptive Line Enhancement

(ALE) configuration as presented in Fig. A.2-1. The desired

signal is:

s(k) =Y 2Rss (o)' cos wk (A.2-1)
q55

where R (o) is the desired signal power.ss

And:

x(k) = s(k) + n(k)

where n(k) is a white gaussian noise with variance R (o).nn

The execution initialization controls the parameters R (O),
ss

Rnn(o), and w. For each Na and signal statistics used, the

program evaluates the optimal values of the mean squared

error, Jmin' and weights a. as follows:

Jmin = lim J(k) (A. 2-2)

a

a. = lim a.(k) for i=0,1,...,N -1 (A.2-3)

11 0
a

k133
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For 200 points spread equally over the time of the experiment

the program evaluates the performance function, J(k):

J(k) =JMin + [Ak-A T  R [Ak-*] (A.2-4)

where

Ak is the vector of filter weights at time k.

A is the vector of optimal weights determined by (A.2-3).

R is the input signal autocorrelation matrix.

At the end of the experiment the program evaluates:

* 1 (1) The steady-state MSE, J , as the averaqe value of

J(k) in the last 10% of the experiment.

(2) Convergence time, TC, directly from the definition

as the time required for the error (J(k)-J ) to be
55

reduced to 10% of its initial value.

(3) Misadjustment, M:

Jss -Jmin
M Jmin (A.2-S)

(4) Processing gain, PG:

PG = 10 log [ nn (A.2-6)
ss

35

The program includes filter subroutines that perform th LMS,

FSC, and the SLMS algorithms.
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A.3 IIR SIMULATION PROGRAM

Three configurations were used for IIR adaptive filters

simulation:

- ALE configuration as discussed in Section A.2. Dif-

ferences from the FIR program are indicated later.

- Parameter Identification example as shown in Fig.

A.3-1. This example was used to demonstrate conver-

gence to the global minimum of a multimodal performance

surface. This example is taken from Johanson and

Larimore [11 and was used also by Parikh and Ahmed [13].

- Stability test, as shown in Fig. A.3-2. This test was

used with the optimal location for the pole near the

unit circle to demonstrate the stability of Feintuch

and the random search algorithms, and the lack of

stability of the Stearns' algorithm.

The ALE IIR experiments are similar to the FIR except for

the following:

(1) The optimal values of (A.2-2) and (A.2-3) are not

used.

(2) The MSE, J(k), is evaluated by:

N -l
av 2

Jik) = E [y(k-j) - s(k-j)] IN (A.3-1)
j=0

where Nay is an averaging interva4the values used were

between 100 and 500. Obviously J(k) is evaluated only once in

each averaging interval.
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I - -I

(3) The misadjustment, M, of (A.2-5) is not used.

The program includes filter subroutines that use the

following hIR algorithms:

- Feintuch

- Stearns

- Random Search

- RGS

- Apriori Structured Pole.

In order to present the algorithm details and as an example

of a filter subroutine, the RGS subroutine is given in

Appendix B.

139



APPENDIX B

SUBROUTINE RGS
C

C *
C RANDOM AND GRADIENT SEARCH SUBROUTINE *
C
C X(100) INPUT DATA IN 100 ELEMENTS ARRAY *
C R(100) REFERENCE DATA
C Y(100) OUTPUT DATA
C A( * ) FEEDFORWARD WEIGHTS
C B( o ) FEEDBACK WEIGHTS
C *

C
C THE COMMON BLOCK

INCLUDE 'ARCMN'
DO 100 Kn1,100

C FEEDBACK SECTION PROCESSINOe
C BT(,) IS THE TESTED POINT.

YN=X(K)
YTN-X(K)
DO 101 J1INB

YN-YN+B(J)*YB(J)
YTN-YTN BT(J)*YT(J)

101 CONTINUE
C SHIFTING THE SIGNAL IN THE FILTER'S MEMORY

DO 102 J-lINAB-1
YB(NAB-J+t)-YB(NAB-J)
YT(NAB-J+I)-YT(NAB-J)

102 CONTINUE
YB(1)-YN
YT(1)-YTN

C FEEDFORWARD SECTION PROCESSING
Y(K)=O.O
ZT-0.0
DO 103 JmlNA

Y(K)-Y(K)+A(J)*YB(J)
ZT-ZT+A(J)*YT(J)

103 CONTINUE
C THE ERROR TERMS

ER-Y(K)-R(K)
ETwZT-R(K)

C FEEDFORWARD WEIGHTS' ADAPTATION
DO 104 JmlNA
A(J)=A(J)-GA*SIGN(1.OPER)*SIGN(1.0.YB(J))

104 CONTINUE
C PERFORMENCE FUNCTION ESTIMATION
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EC-EC+ER*ER
ECT-ECT+ET*ET
IF(ECT.GToTH) L-LL
L=L+t
IF(L*LE.LL) GO TO 111

C COMPARISON AND RANDOM SEARCH DECISION MAKING
L-O
IF(ECT.LT.EC) GO TO 200
00 TO 201

200 CONTINUE
DO 203 J-lPNB
BJ)DBT(J)
YB(J)-YT(J)

203 CONTINUE
201 CONTINUE
C NEW TEST POINT SELECTION

DO 204 JIn,NB
BT(J)-B(J)+GBGAUSS(O)

204 CONTINUE
DO 205 J-lNAB

YT(J)-YR(J)
205 CONTINUE

EC-0.0
ECT-0.0

111 CONTINUE
C EXPERIMENT DATA EXTRACTION

CALL AVERR(K)
IF(IOUT.EQ.2) CALL UTPR

100 CONTINUE
RETURN
END
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